DAV SCHOOL, DHURWA SECTOR – III: RANCHI – 4 SUMMER ASSIGNMENT – 2020-21 Subject: MATHS CLASS – X

Recommended Book: Secondary School Mathematics (R.S. Agarwal)

- I. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients.
 - 1. $4x^2 + 4x^2 3$
 - 2. $5x^2 4 8x$
 - 3. $2\sqrt{3x^2} 5x + \sqrt{3}$
 - *4. Find the quadratic polynomial, sum of whose zeros is 8 and their product is 12. Hence find the zeros of the polynomial.*
 - 5. If $x = \frac{2}{3}$ and x = -3x are the roots of the quadratic equation $ax^2 + 7x + b = 0$, then find the values of a and b.
 - 6. If (x + a) is a factor of the polynomial $2x^2 + 2ax + 5x + 10$, find the value of x?
 - 7. Find all the zero of $2x^4 3x^3 5x^2 + 9x 3$ it being given that two of its zeros are $\sqrt{3}$ and $-\sqrt{3}$.
 - 8. If 2 and -2 are two zeros of the polynomial $x^4 + x^3 34x^2 4x + 120$, find all the zeros of the given polynomial.
 - 9. Find all the zeros of $x^4 + x^3 23x^2 3x + 60$, if it is given that two of its zeros are $\sqrt{3}$ and $-\sqrt{3}$.
 - 10. If one zero of the polynomial $x^2 4x + 1$ is (2 + 1)

 $\sqrt{3}$), write the other one.

- 11. Find the zeros of the polynomial $(x^2 + x p(p + 1))$.
- 12. Find the zeros of the polynomial $(x^2 3x m(m + 3))$.
- *13. If* α , β are the zeros of a polynomial such that $\alpha + \beta = 6$ and $\alpha\beta = 4$, then write the polynomial.
- *14. If 3 is a zero of the polynomial* $(2x^2 + x + k)$ *, find the value of K.*
- II. Solve for x and y:

15. $x + \frac{6}{y} = 6$, $3x - \frac{8}{y} = 5(y \neq 0)$ 16. 71x + 37y = 253, 37x + 71y = 28717. $\frac{x}{a} + \frac{y}{b} = 2$, $ax - by = a - b^2$

18. $ax - by = a^2 + b^2$, x + y = 2a

III. Find the value of 'k' for which each of the following systems of linear equations has an infinite number of solutions :

- 19. 2x + 3y = 7, (k 1)x + (k + 2)y = 3k
- 20. 2x + (k 2)y = k, 6x + (2k 1)y = (2k + 5)
- 21. kx + 3y = 2k + 1, 2(k + 1)x + 9y = (7k + 1)
- 22. 5x + 2y = 2k, 2(k + 1)x + ky = (3k + 4)
- 23. (k-1)x y = 5, (k+1)x + (1-k)y = (3k+1)
- 24. (k-3)x + 3y = k, kx + ky = 12
- 25. The sum of a two digit number and the number obtained by reversing the order of its digits is 99. If the digits differ by 3, find the number.
- 26. A two digit number is such that the product of its digits is 14. If 45 is added to the number, the digits interchange their places. Find the number.
- 27. A two digit number is four times the sum of its digits and twice the product of its digits. Find the number.
- 28. Solve each of the following quadratic equations:
 - i. $2x^2 + ax a^2 = 0$ ii. $4x^2 + 4bx - (a^2 - b^2) = 0$ iii. $\frac{3}{x+1} - \frac{1}{2} = \frac{2}{3x-1}, x \neq -1, \frac{1}{3}$ iv. $\frac{1}{x+1} + \frac{2}{x+2} = \frac{5}{x+4}, x \neq -1, -2, -4$
- 29. Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
 - i. $\sqrt{2x^2} + 7x + 5\sqrt{2} = 0$
 - ii. $x^2 + 6x (a^2 + 2a 8) = 0$
 - iii. $x^2 + 5x (a^2 + a 6) = 0$
- 30. For what values of K are the roots of the quadratic equation $3x^2 + 2kx + 27 = 0$ real and equal
- 31. For what values of p are the roots of the quadratic equation $4x^2 + px + 3 = 0$ real and equal?

IV. CHAPTER 3 – LINEAR EQUATION IN TWO VARIABLE

- 1. Solve the following system of linear equations graphically: 4x - 5y - 20 = 0 and 3x = 5y - 15 = 0Determine the vertices of the triangle formed by the lines representing the above equations and the y-axis.
- 2. Solve the following system of equations graphically. 3x + 2y - 11 = 0 and 2x - 3y + 10 = 0Shade the region bounded by these lines and the x-axis.